SHORT COMMUNICATION

VALIDITY OF HEART RATE BASED NOMOGRAM FORS ESTIMATION OF MAXIMUM OXYGEN UPTAKE IN INDIAN POPULATION

S. KRISHNA KUMAR, P. KHARE, A. K. JARYAL AND A. TALWAR*

Department of Physiology, All India Institute of Medical Sciences, New Delhi

(Received on March 19, 2011)

Abstract : Maximal oxygen uptake (VO₂max) during a graded maximal exercise test is the objective method to assess cardiorespiratory fitness. Maximal oxygen uptake testing is limited to only a few laboratories as it requires trained personnel and strenuous effort by the subject. At the population level, submaximal tests have been developed to derive VO₂max indirectly based on heart rate based nomograms or it can be calculated using anthropometric measures. These heart rate based predicted standards have been developed for western population and are used routinely to predict VO₂max in Indian population. In the present study VO₂max was directly measured by maximal exercise test using a bicycle ergometer and was compared with VO₂max derived by recovery heart rate in Queen's College step test (QCST) (PVO,max I) and with VO,max derived from Wasserman equation based on anthropometric parameters and age (PVO₂max II) in a well defined age group of healthy male adults from New Delhi. The values of directly measured VO₂max showed no significant correlation either with the estimated VO₂max with QCST or with VO₂max predicted by Wasserman equation. Bland and Altman method of approach for limit of agreement between VO2max and PVO2max I or PVO2max II revealed that the limits of agreement between directly measured VO₂max and PVO₂max I or PVO₂max II was large indicating inapplicability of prediction equations of western population in the population under study. Thus it is evident that there is an urgent need to develop nomogram for Indian population, may be even for different ethnic sub-population in the country.

Key words : heart rate nomogram maximal oxygen consumption

INTRODUCTION	is considered as an objective, gold standard
	measure to assess the cardiorespiratory
Maximum Oxygen Uptake during	fitness and is largely used as a predictor of
maximal graded exercise testing (VO ₂ max)	cardiovascular morbidity and mortality (1).

*Corresponding Author: Dr. Anjana Talwar, Associate Professor, Respiratory Physiology Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, Ph.: 011-26546446; E-mail: anjanatalwar@gmail.com For field studies, many investigators use either nomograms based on heart rate response to sub-maximal exercise or equations based on anthropometric parameters and age to predict VO₂max. Among various indirect protocols (2, 3) the Queen's College step test or QCST is the simplest one and uses the prediction equations to calculate the VO₂max from recovery heart rate (4). Even though the heart rate based predicted standards have been developed for western population, they are widely used in field studies with the presumption that they are valid for Indian population as well. Hence, there is an urgent need to test the validity of these nomograms for applicability in Indian population.

MATERIAL AND METHODS

In the present study, symptom limited VO₂max was directly measured and compared with predicted VO₂max using equation based on recovery heart rate in Queen's College step test (QCST) (PVO₂max I) and with VO₂max derived from Wasserman equation based on anthropometric parameters and age (PVO₂max II). Healthy male sedentary students (n=19) were recruited for the study in the age group of 20 to 30 years. The study was approved by the institute ethics committee. Maximum oxygen uptake of each subject was directly measured during maximal exercise test. The VO₂max was also estimated during QCST using Prediction equation based on recovery heart rate (PVO₂max I). Height and weight of the subject was measured. FEV_1 and FVC was measured on the day of the maximal exercise testing.

Direct measurement of VO₂max

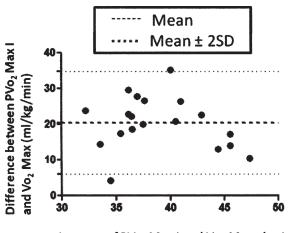
The exercise was done on electronically

braked cycle ergometer (Lode-2003, corival, Netherlands) with a continuous, incremental exercise (ramp) protocol as per recommendation of the European guidelines (5). During exercise, the subjects inhaled fresh air through non-breathing "T" valve and exhaled to a mixing chamber continuously (Vista MX system, Vacumed, Germany). The software was configured to provide various ventilatory parameters. ECG, heart rate, respiratory rate, O2 uptake, CO_2 output, respiratory exchange ratio, were recorded continuously.

Estimation of VO_2max by Queen's College Step test (PVO_2max I)

The step test was performed on a step of 16.25 inches (41.3 cm) height for a total duration of 3 minutes. Immediately after stepping for a period of 3 minutes, the recovery pulse rate was determined for a 15-second period starting 5 seconds into recovery and the maximum oxygen uptake (PVO₂max I) was calculated. The predicted values based on Wasserman equation were computed by the Vacumed software and were noted as PVO₂max II. Statistical treatment of the data was done by Student's t test, Pearson's product moment correlation, linear regression statistics and Bland and Altman approach for limit of agreement (6).

RESULTS


Means and standard deviation of Age (years) was 27.42 ± 3.024 , Height (cm) was 168.68 ± 6.76 , Weight (kg) was 66.16 ± 6.067 , BMI (cm/kg²) was 23.28 ± 1.97 , VO₂max (ml/kg/min) was 28.747 ± 6.64 .Mean VO₂max predicted by recovery heart rate during QCST was 49.136 ml/kg/min with a range of

Indian J Physiol Pharmacol 2012; 56(3)

Validity of Heart Rate Based Nomogram for Estimation 281

36.60-57.60 ml/kg/min. The mean predicted VO_2 max by equation based on anthropometric variables by Wasserman was 41.891 ml/kg/min with a range of 32.76-50.49 ml/kg/min.

Analysis of data by Bland and Altman method of approach for limit of agreement revealed that the limits of agreement between directly measured VO₂max and PVO₂max I was large (5.934 to 34.84 ml/kg min) with poor confidence intervals, indicating inapplicability of current protocol of Queen's College Step Test in this particular population (Fig. 1). Similarly, Analysis of data by Bland and Altman method of approach for limit of agreement between VO₂max and PVO₂max II revealed that the limits of agreement between directly measured VO₂max and predicted VO₂max based on anthropometric parameters was large (0.977 to 25.31 ml/kg/min) with poor confidence intervals (Fig. 2), indicating

Average of PVo_2 Max I and Vo_2 Max obtained from two methods(ml/kg/min)

Fig. 1: Plotting of difference between the VO_2max values estimated by vacumed and VO_2max predicted by QCST (PVO $_2max$ I) against their means.

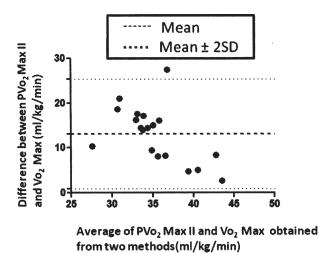


Fig. 2: Plotting of difference between the VO₂max values estimated by vacumed and VO₂max predicted values based on equation by Wasserman (PVO₂max II) against their means.

inapplicability of prediction equations based on anthropometric parameters of western population in the population under study.

The mean value of VO_2max measured by direct method also did not have any significant correlation with VO_2max evaluated by prediction equation by Jones et al (7) based on physical parameters (r=0.034) or ergometer exercise based prediction equations by Hansen et al (8). The prediction equations by Jones et al (7) and Hansen et al (8) are also based on data derived from western population.

DISCUSSION

The values of VO_2max directly measured by exercise testing in our subjects is much lower as compared to VO_2max predicted by equation based on recovery heart rate in Queen's step test (PVO_2max I) and also the VO_2max predicted by the Vista MX system by Vacumed derived from Wasserman equation based on anthropometric parameters (PVO,max II).

The mean value of VO₂max measured by direct method also did not have any significant correlation with VO₂max evaluated by prediction equation by Jones et al (7)based on physical parameters (r=0.034) or ergometer exercise based prediction equations by Hansen et al (8). The values of VO₂max directly measured by exercise testing in our subjects is much lower as compared to VO₂max predicted by equation based on recovery heart rate in Queen's step test (PVO₂max I) and also the VO₂max predicted by the Vista MX system by Vacumed derived from Wasserman equation based on anthropometric parameters (PVO₂max II). The low values of directly measured VO₂max indicate that the studied population has lower aerobic capacity and poor physical fitness with respect to population from other countries for comparable height, weight and age (9-13). Similar observations were made by Chatterjee and Bandhopadyay who measured the VO₂max in the Kolkata and Uttar Pradesh (14).

The values of directly measured VO_2max showed no significant correlation either with the estimated VO₂max with QCST or with VO₂max predicted by Wasserman equation. Bland and Altman's method of limit of agreement approach, revealed that the bias between the directly measured VO₂max and VO_omax estimated by other two methods is not systematic (large range of limit of agreement, Fig. 1, 2). This large range of limit agreement precludes application of VO₂max by QCST and Wasserman equation to sedentary population under study. The lower values obtained by direct method could have been due to the difference in the actual physical abilities of the subjects. No correlations could be found between the directly measured VO₂max with other equation based methods viz. Jones et al (7)(r=0.034) or ergometer exercise based prediction equations (r=0.03) (8).

We agree with the conclusion drawn by similar reports that had questioned the validity of the recovery heart based nomogram. We have not attempted to develop new equation given the small sample size. The present study substantiates the earlier reports that there is an urgent need to develop nomogram for Indian population, may be even for different ethnic subpopulation in the country.

REFERENCES

- American Thoracic Society/American College of Chest Physicians. Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211-277.
- Fox EL. A simple accurate technique for predicting maximal aerobic power. J Appl Physiol 1973; 35: 914-916.
- 3. McArdle WD, Katch FI, Pechar GS et al. Reliability and interrelationships between maximal oxygen intake, physical work capacity

and step test scores in college women. Med Sci Sports Exerc 1972; 4: 182-186.

- Chatterjee S, Chatterjee P, Bandyopadhyay A. Validity of Queen's College Step Test for estimation Maximum oxygen uptake in Young Indian Women. Indian J Med Res 2005; 121: 32-35.
- Roca J, Whipp BJ. Clinical exercise testing with reference to lung disease: indications, standardization and interpretation strategies. *Eur Respir J* 1997; 10: 2662-2689.

Indian J Physiol Pharmacol 2012; 56(3)

- Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurements. *Lancet* 1986; 1(8476): 307-310.
- Jones NL, Summers E, Killian KJ. Influence of age and stature on exercise capacity during incremental cycle ergometry in men and women. *Am Rev Respir Dis* 1989; 140: 1373-1380.
- Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis 1984; 129: S49-S55.
- Davies CTM, Barnes C, Fox RH, Ojikutu RO, Samueloff AS. Ethnic differences in physical work capacity. J Appl Physiol 1972; 33: 726-732.
- 10. Kitagawa K, Miyashita M, Yamamoto K. Maximal oxygen uptake, body composition and running performance in young Japanese adults of both

Validity of Heart Rate Based Nomogram for Estimation 283

sexes. Jpn J Physical Edu 1977; 21: 335-340.

- 11. Uth N, Sorensen H, Overgaard K, Pedersen KP. Estimation of VO_2max from the ratio between HRmax and HRrest the heart rate ratio method. Eur J Appl Physiol 91: 111-115.
- Watanabe K, Nakadomo F, Maeda K. Relationship between body composition and cardiorespiratory fitness in Japanese junior high school boys and girls. Ann Physiol Anthropol 1994; 13: 167-174.
- Wyndham CH, Straydom NB, Morrison JF, et al. Difference between ethnic group in physical working capacity. J Appl Physiol 1963; 18: 361-366.
- Chatterjee S, Dey SK, Nag SK. Maximum oxygen uptake capacity of smokers of different age groups. Jpn J Physiol 1987; 37: 837-850.